Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the quantum compression scheme proposed by Schumacher, Alice compresses a message that Bob decompresses. In that approach, there is some probability of failure and, even when successful, some distortion of the state. For sufficiently large blocklengths, both of these imperfections can be made arbitrarily small while achieving a compression rate that asymp- totically approaches the source coding bound. However, direct implementation of Schumacher compression suffers from poor circuit complexity. In this paper, we consider a slightly different approach based on classical syndrome source coding. The idea is to use a linear error-correcting code and treat the state to be compressed as a superposition of error patterns. Then, Alice can use quantum gates to apply the parity-check matrix to her message state. This will convert it into a superposition of syndromes. If the original superposition was supported on correctable errors (e.g., coset leaders), then this process can be reversed by decoding. An implementation of this based on polar codes is described and simulated. As in classical source coding based on polar codes, Alice maps the information into the “frozen” qubits that constitute the syndrome. To decompress, Bob utilizes a quantum version of successive cancellation coding.more » « less
-
This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results.more » « less
-
This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results.more » « less
-
Belief propagation (BP) is a classical algorithm that approximates the marginal distribution associated with a factor graph by passing messages between adjacent nodes in the graph. It gained popularity in the 1990’s as a powerful decoding algorithm for LDPC codes. In 2016, Renes introduced a belief propagation with quantum messages (BPQM) and described how it could be used to decode classical codes defined by tree factor graphs that are sent over the classical-quantum pure-state channel. In this work, we propose an extension of BPQM to general binary-input symmetric classical-quantum (BSCQ) channels based on the implementation of a symmetric "paired measurement". While this new paired-measurement BPQM (PMBPQM) approach is suboptimal in general, it provides a concrete BPQM decoder that can be implemented with local operations. Finally, we demonstrate that density evolution can be used to analyze the performance of PMBPQM on tree factor graphs. As an application, we compute noise thresholds of some LDPC codes with BPQM decoding for a class of BSCQ channels.more » « less
An official website of the United States government

Full Text Available